Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
FuSE-MET addresses critical challenges in deploying human activity recognition (HAR) systems in uncontrolled environments by effectively managing noisy labels, sparse data, and undefined activity vocabularies. By integrating BERT-based word embeddings with domain-specific knowledge (i.e., MET values), FuSE-MET optimizes label merging, reducing label complexity and improving classification accuracy. Our approach outperforms the state-of-the-art techniques, including ChatGPT-4, by balancing semantic meaning and physical intensity.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Multitask learning models provide benefits by reducing model complexity and improving accuracy by concurrently learning multiple tasks with shared representations. Leveraging inductive knowledge transfer, these models mitigate the risk of overfitting on any specific task, leading to enhanced overall performance. However, supervised multitask learning models, like many neural networks, require substantial amounts of labeled data. Given the cost associated with data labeling, there is a need for an efficient label acquisition mechanism, known as multitask active learning (MTAL). In wearable sensor systems, success of MTAL largely hinges on its query strategies because active learning in such settings involves interaction with end-users (e.g., patients) for annotation. However, these strategies have not been studied in mobile health settings and wearable systems to date. While strategies like one-sided sampling, alternating sampling, and rank-combination-based sampling have been proposed in the past, their applicability in mobile sensor settings—a domain constrained by label deficit—remains largely unexplored. This study investigates the MTAL querying approaches and addresses crucial questions related to the choice of sampling methods and the effectiveness of multitask learning in mobile health applications. Utilizing two datasets on activity recognition and emotion classification, our findings reveal that rank-based sampling outperforms other techniques, particularly in tasks with high correlation. However, sole reliance on informativeness for sample selection may introduce biases into models. To address this issue, we also propose a Clustered Stratified Sampling (CSS) method in tandem with the multitask active learning query process. CSS identifies clustered mini-batches of samples, optimizing budget utilization and maximizing performance. When employed alongside rank-based query selection, our proposed CSS algorithm demonstrates up to 9% improvement in accuracy over traditional querying approaches for a 2000-query budget.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available June 11, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Machine learning algorithms are increasingly used for inference and decision-making in embedded systems. Data from sensors are used to train machine learning models for various smart functions of embedded and cyber-physical systems ranging from applications in healthcare, autonomous vehicles, and national security. However, recent studies have shown that machine learning models can be fooled by adding adversarial noise to their inputs. The perturbed inputs are called adversarial examples. Furthermore, adversarial examples designed to fool one machine learning system are also often effective against another system. This property of adversarial examples is calledadversarial transferabilityand has not been explored in wearable systems to date. In this work, we take the first stride in studying adversarial transferability in wearable sensor systems from four viewpoints: (1) transferability between machine learning models; (2) transferability across users/subjects of the embedded system; (3) transferability across sensor body locations; and (4) transferability across datasets used for model training. We present a set of carefully designed experiments to investigate these transferability scenarios. We also propose a threat model describing the interactions of an adversary with the source and target sensor systems in different transferability settings. In most cases, we found high untargeted transferability, whereas targeted transferability success scores varied from 0% to 80%. The transferability of adversarial examples depends on many factors such as the inclusion of data from all subjects, sensor body position, number of samples in the dataset, type of learning algorithm, and the distribution of source and target system dataset. The transferability of adversarial examples decreased sharply when the data distribution of the source and target system became more distinct. We also provide guidelines and suggestions for the community for designing robust sensor systems.more » « less
-
Inter-beat interval (IBI) measurement enables estimation of heart-tare variability (HRV) which, in turn, can provide early indication of potential cardiovascular diseases (CVDs). However, extracting IBIs from noisy signals is challenging since the morphology of the signal gets distorted in the presence of noise. Electrocardiogram (ECG) of a person in heavy motion is highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion. After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI estimation from noisy ECG signals with SNR up to -30 dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs. At this noise level, our error percentage remains below 8% and outperforms other state-of-the-art techniques.more » « less
An official website of the United States government
